首页 | 本学科首页   官方微博 | 高级检索  
     检索      

Bessel型光晶格中自旋-轨道耦合极化激元凝聚的稳态结构
引用本文:陈海军,任元,王华.Bessel型光晶格中自旋-轨道耦合极化激元凝聚的稳态结构[J].物理学报,2022(5):268-279.
作者姓名:陈海军  任元  王华
作者单位:航天工程大学宇航科学与技术系;航天工程大学基础部;航天工程大学
基金项目:国家自然科学基金(批准号:62173342,11772001);北京市优秀青年基金(批准号:2017000026833ZK23)资助的课题。
摘    要:Bessel型光晶格是一种非空间周期性的柱对称的光晶格势场,其兼具无限深势阱和环状势阱的特征,在0阶Bessel光晶格势场中央形成深势阱,而在非0阶Beseel光晶格势场中能形成具有中央势垒的环状浅势阱.极化激元是一种半光半物质的准粒子,该准粒子甚至可以在室温条件下发生玻色-爱因斯坦凝聚相变,形成极化激元凝聚.另外,通过极化激元能级的腔诱导TE-TM分裂能在极化激元凝聚中实现足够强的自旋-轨道耦合作用.极化激元凝聚能在室温条件下实现,在其中又存在自旋-轨道耦合作用,其为量子物理的研究提供了全新的平台.本文把Bessel光晶格势场引入到极化激元凝聚系统,研究了存在自旋-轨道耦合作用下的旋量双组分极化激元凝聚系统的稳态结构.通过求解Gross-Pitaevskii方程给出了极化激元凝聚系统在实验室坐标系和旋转坐标系中极化激元凝聚系统的稳态结构,由于Bessel势场的引入,使得稳态结构更具有多样性.给出了实验室坐标系中在中央深势阱中存在的基础型高斯孤立子、多极孤立子和在环状浅势阱中存在环状孤立子和多极孤立子的稳态结构;给出了旋转坐标系中存在的涡旋环状孤立子,及其由于自旋-轨道相互作用引起的组...

关 键 词:极化激元凝聚  Bessel光晶格  孤立子  稳态

Stationary structures of spin-orbit coupled polariton condensates in Bessel lattices
Chen Hai-Jun,Ren Yuan,Wang Hua.Stationary structures of spin-orbit coupled polariton condensates in Bessel lattices[J].Acta Physica Sinica,2022(5):268-279.
Authors:Chen Hai-Jun  Ren Yuan  Wang Hua
Institution:(Department of Aerospace Science and Technology,Space Engineering University,Beijing 101416,China;Department of Basic Course,Space Engineering University,Beijing 101416,China;State Key Laboratory of Laser Propulsion and its Application,Space Engineering University,Beijing 101416,China)
Abstract:Bessel optical lattice yields a non-spatially periodic column-symmetric optical lattice potential field,which has the characteristics of both infinite deep potential well and the ring-shaped potential well.A deep potential is formed in the center of the 0-order Bessel optical lattice.In the non-zero-order Beseel optical lattice,a ringshaped shallow potential well with a central barrier can be formed.Exciton-polariton is a semi-light and semimatter quasi-particle,which can achieve the Bose-Einstein condensate phase transition even at room temperature to form a polariton condensate.In addition,the polariton condensate is likely to realize sufficiently strong spin-orbit coupling due to the cavity-induced TE-TM splitting of the polariton energy levels.The polariton condensate can be realized at room temperature,and there can be spin-orbit coupling in it,which provides a new platform for the studying of quantum physics.In this paper,the Bessel optical lattice is introduced into a polariton condensate.The stationary state structure of spinor two-component polariton condensate with spin-orbit coupling is investigated.By solving the Gross-Pitaevskii equation,we first give a stationary state structures of the polariton condensate both in the laboratory coordinate frame and in the rotating coordinate frame.Owing to the introduction of the Bessel optical lattice,the stationary state structures of polariton condensate are diverse.We dispaly the stationary state structures of the basic Gaussian solitons and multipole solitons in the central deep potential well in the laboratory coordinate frame,and the ring solitons and multipole solitons in the central shallow potential well.We also dispaly the vortex ring soliton that exists in the rotating coordinate frame,and the stationary state structure of the component separation caused by the spin-orbit interaction.We analyze not only the influences of the spin-orbit coupling on the stationary state structures in the two coordinate frames,but also the stability of the multipole solitons in the rotating coordinate frame.It is found that the multipole solitons formed in the ring-shaped shallow potential well have better stability than in the central deep potential well,and they can maintain the relative structure and spatial distribution for a long time in the rotation process.In the rotating coordinate frame,even if the two-component separation conditions are not satisfied,the introduction of spinorbit coupling can cause the two components to separate.
Keywords:exciton-polariton condensates  Bessel optical lattice  soliton  stationary state
本文献已被 维普 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号