首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Determination of rare earth elements in tomato plants by inductively coupled plasma mass spectrometry techniques
Authors:S Spalla  C Baffi  C Barbante  C Turretta  G Cozzi  G M Beone  M Bettinelli
Institution:1. Istituto di Chimica Agraria ed Ambientale, Sezione Suolo, Università Cattolica del Sacro Cuore Piacenza, Italy;2. Istituto per la Dinamica dei Processi Ambientali – CNR, Venezia, Italy;3. Dipartimento di Scienze Ambientali, Università di Venezia, Italy;4. C.M.B. Central Laboratory, Piacenza, Italy
Abstract:In recent years identification of the geographical origin of food has grown more important as consumers have become interested in knowing the provenance of the food that they purchase and eat. Certification schemes and labels have thus been developed to protect consumers and genuine producers from the improper use of popular brand names or renowned geographical origins. As the tomato is one of the major components of what is considered to be the healthy Mediterranean diet, it is important to be able to determine the geographical origin of tomatoes and tomato‐based products such as tomato sauce. The aim of this work is to develop an analytical method to determine rare earth elements (RRE) for the control of the geographic origin of tomatoes. The content of REE in tomato plant samples collected from an agricultural area in Piacenza, Italy, was determined, using four different digestion procedures with and without HF. Microwave dissolution with HNO3 + H2O2 proved to be the most suitable digestion procedure. Inductively coupled plasma quadrupole mass spectrometry (ICPQMS) and inductively coupled plasma sector field plasma mass spectrometry (ICPSFMS) instruments, both coupled with a desolvation system, were used to determine the REE in tomato plants in two different laboratories. A matched calibration curve method was used for the quantification of the analytes. The detection limits (MDLs) of the method ranged from 0.03 ng g?1 for Ho, Tm, and Lu to 2 ng g?1 for La and Ce. The precision, in terms of relative standard deviation on six replicates, was good, with values ranging, on average, from 6.0% for LREE (light rare earth elements) to 16.5% for HREE (heavy rare earth elements). These detection limits allowed the determination of the very low concentrations of REE present in tomato berries. For the concentrations of REE in tomato plants, the following trend was observed: roots > leaves > stems > berries. Copyright © 2009 John Wiley & Sons, Ltd.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号