首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Stability of nanodispersions: a model for kinetics of aggregation of nanoparticles
Authors:Kallay Nikola  Zalac Suzana
Institution:Department of Chemistry, Faculty of Science, University of Zagreb, Maruli?ev trg 19, P.O. Box 163, Zagreb, HR 10000, Croatia. nkallay@prelog.chem.pmf.hr
Abstract:In the course of aggregation of very small colloid particles (nanoparticles) the overlap of the diffuse layers is practically complete, so that one cannot apply the common DLVO theory. Since nanopoarticles are small compared to the extent of the diffuse layer, the process is considered in the same way as for two interacting ions. Therefore, the Br?nsted concept based on the Transition State Theory was applied. The charge of interacting nanoparticles was calculated by means of the Surface Complexation Model and decrease of effective charge of particles was also taken into account. Numerical simulations were performed using the parameters for hematite and rutile colloid systems. The effect of pH and electrolyte concentration on the stability coefficient of nanosystems was found to be more pronounced but similar to that for regular colloidal systems. The effect markedly depends on the nature of the solid which is characterized by equilibrium constants of surface reactions responsible for surface charge, i.e., by the point of zero charge, while the specificity of counterions is described by their association affinity, i.e., by surface association equilibrium constants. The most pronounced is the particle size effect. It was shown that extremely small particles cannot be stabilized by an electrostatic repulsion barrier. Additionally, at the same mass concentration, nanoparticles aggregate more rapidly than ordinary colloidal particles due to thier higher number concentration.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号