首页 | 本学科首页   官方微博 | 高级检索  
     


The global and superlinear convergence of a new nonmonotone MBFGS algorithm on convex objective functions
Authors:Liying Liu   Shengwei Yao  Zengxin Wei
Affiliation:aCollege of Mathematics Science, Liaocheng University, 252059, PR China;bCollege of Mathematics and Information Science, Guangxi University, 530004, PR China
Abstract:In this paper, a new nonmonotone MBFGS algorithm for unconstrained optimization will be proposed. Under some suitable assumptions, the global and superlinear convergence of the new nonmonotone MBFGS algorithm on convex objective functions will be established. Some numerical experiments show that this new nonmonotone MBFGS algorithm is competitive to the MBFGS algorithm and the nonmonotone BFGS algorithm.
Keywords:Nonmonotone linesearch   MBFGS algorithm   Global convergence   Superlinear convergence   Unconstrained optimization
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号