首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Geminate proton recombination at the surface of SDS and CTAC micelles probed with a micelle-anchored anthocyanin
Authors:Rodrigues Rita  Vautier-Giongo Carolina  Silva Palmira F  Fernandes Ana C  Cruz Rui  Maçanita António L  Quina Frank H
Institution:Centro de Química Estrutural, Departamento Engenharia Química, IST/UTL, Lisboa, Portugal.
Abstract:The functionalized flavylium salt 6-hexyl-7-hydroxy-4-methyflavylium chloride (HHMF) was employed to probe some of the fundamental features of proton transfer reactions at the surface of anionic sodium dodecyl sulfate (SDS) and cationic hexadecyltrimethylammonium chloride (CTAC) micelles. In contrast to most ordinary flavylium salts, HHMF is insoluble in water, but readily incorporates into SDS and CTAC micelles. In the ground state, the rate constant for deprotonation of the acid form (AH+) of HHMF decreases 100-fold upon going from CTAC (kd = 3.0 x 10(6) s(-1)) to SDS (kd = 1.4 x 10(4) s(-1)), consistent with the presence of an activation barrier for proton transfer in the ground state and reflecting, respectively, stabilization or destabilization of the AH+ cation by the micelle. Reprotonation of A is diffusion-controlled in both micelles (kp(SDS) = (2.1 x 10(11))H+]aq s(-1) and kp(CTAC) = (3.7 x 10(8))H+]aq s(-1)), the difference reflecting the rate of proton entry into the micelles. In the excited singlet state, the rate constants for deprotonation of the AH+* form of HHMF are similar in the two micelles (2.4 x 10(10) s(-1)), consistent with activationless proton transfer. Reprotonation of the excited A is dominated by fast geminate recombination of the photogenerated (A*-H+) pair at the micelle surface (k(rec)(SDS) = 6.1 x 10(9) s(-1) and k(rec)(CTAC) = 3.4 x 10(10) s(-1)) and the net efficiencies of geminate recombination are quite similar in SDS (0.89) and CTAC (0.86).
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号