首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Density functional theory for planar electric double layers: closing the gap between simple and polyelectrolytes
Authors:Li Zhidong  Wu Jianzhong
Institution:Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521-0425, USA.
Abstract:We report a nonlocal density functional theory (NLDFT) for polyelectrolyte solutions within the primitive model; i.e., the solvent is represented by a continuous dielectric medium, and the small ions and polyions by single and tangentially connected charged hard spheres, respectively. The excess Helmholtz energy functional is derived from a modified fundamental measure theory for hard-sphere repulsion, an extended first-order thermodynamic perturbation theory for chain connectivity, and a quadratic functional Taylor expansion for electrostatic correlations. With the direct and cavity correlation functions of the corresponding monomeric systems as inputs, the NLDFT predicts the segment-level microscopic structures and adsorption isotherms of polyelectrolytes at oppositely charged surfaces in good agreement with molecular simulations. In particular, it faithfully reproduces the layering structures of polyions, charge inversion, and overcharging that cannot be captured by alternative methods including the polyelectrolyte Poisson-Boltzmann equation and an earlier version of DFT. The NLDFT has also been used to investigate the influences of the small ion valence, polyion chain length, and size disparity between polyion segments and counterions on the microscopic structure, mean electrostatic potential, and overcharging in planar electric double layers containing polyelectrolytes.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号