首页 | 本学科首页   官方微博 | 高级检索  
     


Verbrückte und unverbrückte norbornyl-kationen in der gasphase. Berechnungen zur stabilität isomerer norbornyl-kationen mit hilfe quantenmechanischer verfahren
Authors:G. Wenke  D. Lenoir
Affiliation:Organisch-Chemisches Institut der Technischen Universität München, Lichtenbergstrasse 4, 8046 Garching, Deutschland
Abstract:The geometry and the relative stability of bicyclic compounds 120 have been calculated by standard quantum mechanics methods.MINDO/3 yields the following stability order of isomeric norbornyl cations (relative energies in kcalmole): 1-norbornyl cation 9 (0.0); 1.7 σ-bridged cation 6 (0.7); 7-norbornyl cation (nonplanar) 7 (1.1); 2-norbornyl cation (classical) 2 (4.2); 7-norbornyl cation (planar) 8 (4.3); 2-norbornyl cation (bridged) 1 (6.1). The stability of the same ions calculated by ab initio methods (STO-3G, MINDO/3-geometry) leads to an order more nearly consistent with experimental results: 2-norbornyl cation (classical) 2 (0.0); 2-norbornyl cation (bridged) 1 (5.9); 7-norbornyl cation (planar) 8 (11.1); 1-norbornyl cation 9 (14.6); 7-norbornyl cation (nonplanar) 7 (21.2). For the secondary 7-norbornyl cation, MINDO/3 gives a pyramidal configuration, 3.2 kcalmole more stable than the planar form. In contrast, the ab initio results (complete optimization of all geometrical parameters) indicate the planar cation to be the most stable form. The bridged structure of 2-norbornyl cation 1 is calculated (STO-3G, partly optimized) to be 4.3 kcalmole less stable than the classical counterpart, 2. For the lower homologues 12 and 13 (STO-3G, complete geometry optimization), this difference is 6.4 kcalmole. However, more extended basis sets should favour the bridged structures. The hydrogen bridged norbornyl cations 3, 4, and 5 have been calculated (STO-3G, partly optimized) to be 14.4, 23.6 and 29.9 kcalmole less stable than 2. The stability differences between the corresponding tertiary bicyclic ions 10 vs 11, and 14 vs 15 are calculated (ab initio) to be 15.3 and 19.0 kcal/mole, respectively, in favour of classical structures. The influence of methyl substitution at positions C1 and C6 (exo) on bridged and unbridged structure of 2-norbornyl cation is calculated. Pyramidal secondary and tertiary 2-norbornyl cations 19 (a; R=H, b; R=CH3) and 20 (a; R=H, b; r=CH3) have been used to model the electrical effects in the solvolysis transition states of epimeric 2-norbornyl esters. Due to more efficient hyperconjugation the pyramidal exo cation is stabilized more than the endo cation by 5.2 kcalmole for the secondary series and 3.5 kcalmole for the tertiary series. Bonding of endo cation 20 with a nucleophile should be stronger than bonding of exo cation 19 due to more efficient HOMO-LUMO interaction.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号