首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Polarographic chemometric determination of zinc and nickel in aqueous samples
Authors:Moneeb Marwa S
Institution:

aPharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, University of Alexandria, Alexandria 21521, Egypt

Abstract:Polarographic chemometric methods were applied to the determination of zinc and nickel in aqueous solutions previously acidified with 0.1 M acetate buffer (pH 4.2). The studied methods are multivariate methods including classical least squares (CLS), principal component regression (PCR) and partial least squares (PLS); derivative ratio methods (first, 1D and second, 2D derivative ratio). A comparative study was considered. The studied chemometric methods do not need the presence of any reduction potential shift reagent in spite of the great overlap between the two metals polarograms. A training set consisting of 10 binary mixture solutions in the possible combinations containing 0.13–9.30 μg/ml Zn(II) and 0.20–12.25 μg/ml Ni(II) was used to develop the chemometric calibrations (CLS, PCR and PLS). A validation set containing the synthetic mixtures in the range of 0.29–9.00 μg/ml for Zn(II) and 0.30–11.60 μg/ml for Ni(II) was used to validate the multivariate calibrations. Same mixtures were used to develop the derivative ratio methods. The polarograms were recorded and their current values were measured within the potential range −920 to −1052 mV at 2 mV intervals. The mean percentage recoveries obtained using CLS, PCR and PLS were found to be 99.5 ± 1.5%, 100.0 ± 1.1% and 100.0 ± 1.0% for Zn(II) and 99.4 ± 1.3%, 99.7 ± 1.2% and 99.9 ± 1.0% for Ni(II), respectively. The mean percentage recoveries obtained using 1D at −950 mV, 1D at −1010 mV, 1D at −950 mV–1D at −1010 mV and 2D at −986 mV for Zn(II) were found to be 99.7 ± 1.2%, 99.2 ± 1.6%, 99.4 ± 1.4% and 99.4 ± 1.4%; and using 1D at −1030 mV and 2D at −1010 mV for Ni(II) were found to be 100.5 ± 1.3% and 100.4 ± 1.3%, respectively. Interferences due to the presence of Cd, Co, Pb, Fe, Mn, Ca, Mg, Cu and Al were studied. The applicability of the proposed methods was assessed through the determination of both metals in tap drinking-water. Samples were subjected if required up to a 20-fold preconcentration step by microwaving in pyrex vessels. The results were compared with those obtained using the zincon and the heptoxime colorimetric reference methods for the determination of zinc and nickel, respectively.
Keywords:Polarography  Chemometrics  Zinc  Nickel  Water
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号