首页 | 本学科首页   官方微博 | 高级检索  
     


Order-order and order-disorder transitions in thin films of an amphiphilic liquid crystalline diblock copolymer
Authors:Yoon Jinhwan  Jung Sun Young  Ahn Byungcheol  Heo Kyuyoung  Jin Sangwoo  Iyoda Tomokazu  Yoshida Hirohisa  Ree Moonhor
Affiliation:Department of Chemistry, National Research Laboratory for Polymer Synthesis & Physics, Pohang Accelerator Laboratory, Center for Integrated Molecular Systems, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea.
Abstract:In this study, we quantitatively investigated the temperature-dependent phase transition behaviors of thin films of an interesting amphiphilic diblock copolymer, poly(ethylene oxide)-b-poly(11-[4-(4-butylphenylazo)phenoxy]undecyl methacrylate) (p(EO)-b-p(MAAZ)) and the resulting morphological structures by using synchrotron grazing incidence X-ray scattering (GIXS) and differential scanning calorimetry. The quantitative GIXS analysis showed that the diblock copolymer in the homogeneous, isotropic melt state undergoes phase-separation near 190 degrees C and then forms a body-centered cubic (BCC) structure of spherical p(EO) domains in the p(MAAZ) matrix, at which point the p(EO) domains and the p(MAAZ) matrix are both in amorphous, liquid states. The BCC structure of spherical p(EO) domains is converted to a hexagonal cylinder structure near 120 degrees C, which is induced by the transformation of the isotropic phase of the p(MAAZ) matrix to the smectic A phase, which is composed of a laterally ordered structure of p(MAAZ) blocks with fully extended side groups. The resulting hexagonal cylinder structure is very stable below 120 degrees C. This microscopic hexagonal cylinder structure is retained as the smectic A phase of the p(MAAZ) matrix undergoes further transitions to smectic C near 104 degrees C and to a smectic X phase near 76 degrees C, while the amorphous, liquid phase of the p(EO) cylinders undergoes crystallization near -15 degrees C. These complicated temperature-dependent disorder-order and order-order phase transitions in the films were found to take place reversibly during the heating run. A face-centered orthorhombic structure of p(EO) domains was also found during the heating run and is an intermediate structure in the hexagonal cylinder structure to BCC structure transformation. We use these structural analysis results to propose molecular structure models at various temperatures for thin films of the diblock polymer.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号