首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Methyl rotational tunneling dynamics of p-xylene confined in a crystalline zeolite host
Authors:Nair Sankar  Dimeo Robert M  Neumann Dan A  Horsewill Anthony J  Tsapatsis Michael
Institution:School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0100, USA. sankar.nair@chbe.gatech.edu
Abstract:The methyl rotational tunneling spectrum of p-xylene confined in nanoporous zeolite crystals has been measured by inelastic neutron scattering (INS) and proton nuclear magnetic resonance (NMR), and analyzed to extract the rotational potential energy surfaces characteristic of the methyl groups in the host-guest complex. The number and relative intensities of the tunneling peaks observed by INS indicate the presence of methyl-methyl coupling interactions in addition to the methyl-zeolite interactions. The INS tunneling spectra from the crystals (space group P2(1)2(1)2(1) with four crystallographically inequivalent methyl rotors) are quantitatively interpreted as a combination of transitions involving two coupled methyl rotors as well as a transition involving single-particle tunneling of a third inequivalent rotor, in a manner consistent with the observed tunneling energies and relative intensities. Together, the crystal structure and the absence of additional peaks in the INS spectra suggest that the tunneling of the fourth inequivalent rotor is strongly hindered and inaccessible to INS measurements. This is verified by proton NMR measurements of the spin-lattice relaxation time which reveal the tunneling characteristics of the fourth inequivalent rotor.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号