首页 | 本学科首页   官方微博 | 高级检索  
     检索      

闪电连续电流的光谱分析及通道温度特性研究
引用本文:王雪娟,许伟群,化乐彦,王海通,吕伟涛,杨 静,袁 萍,张其林,张袁瞰.闪电连续电流的光谱分析及通道温度特性研究[J].光谱学与光谱分析,2022,42(7):2069-2075.
作者姓名:王雪娟  许伟群  化乐彦  王海通  吕伟涛  杨 静  袁 萍  张其林  张袁瞰
作者单位:1. 南京信息工程大学气象灾害教育部重点实验室/气候与环境变化国际合作联合实验室/气象灾害预报预警与评估协同创新中心/
中国气象局气溶胶与云降水重点开放实验室,江苏 南京 210044
2. 中国气象科学研究院灾害天气国家重点实验室,北京 100081
3. 中国科学院中层大气和全球环境探测重点实验室,北京 100029
4. 西北师范大学物理与电子工程学院,甘肃省原子分子物理与功能材料重点实验室, 甘肃 兰州 730070
基金项目:国家自然科学基金项目(42005065),江苏省自然科学基金项目(BK20180805),中国气象科学研究院灾害天气国家重点实验室开放课题(2020LASW-B14),中国科学院中层大气和全球环境探测重点实验室(LAGEO)开放课题(LAGEO-2019-07),南京信息工程大学人才启动基金项目(2017r065),南京信息工程大学大学生创新创业训练计划项目(XJDC202110300018)资助
摘    要:连续电流是闪电放电过程中的一个重要子物理过程,它是指雷暴云局部电荷中心在回击之后沿原通道对地的持续放电过程。在连续电流阶段,原本发光微弱的通道其亮度有时会突然增强,这种现象被称为叠加了M分量,自20世纪连续电流被发现以来,国内外学者进行了许多观测研究。目前主要是利用电磁学和光学的观测手段揭示其放电和发光的宏观特征,利用光谱观测对其通道内部微观的发光信息和物理特性等的研究还很缺乏。如关于连续电流阶段放电通道内的温度特性参数目前鲜有报道,而温度是研究闪电连续电流放电通道物理特性所必需的基本参量,也是预防连续电流引起的雷电灾害事故所关心的参数。依据由无狭缝高速光谱仪观测的一次云对地闪电首次回击后叠加三个M分量的连续电流过程的光谱资料,分析了整个放电过程中光谱的演化特征,计算了连续电流放电过程电流核心通道和外围电晕通道的温度,研究了两者随通道高度的变化特性。结果表明,在初始回击阶段,通道的光辐射主要是激发能较高的一次电离的氮离子辐射,在之后连续电流阶段,通道的光辐射则主要是激发能较低的中性氮、氧原子辐射。离子线辐射在回击初期时最强,氢Hα线和红外波段的中性原子线在M1时最强,连续谱在M2时最强。近红外波段的四条线OⅠ 777.4, NⅠ 746.8, 821.6和868.3 nm在整个放电过程都可以被观测到。在连续电流阶段,电流核心通道温度为42 060~43 940 K,比相应回击核心通道温度高6 020~7 900 K;外围电晕通道温度为16 170~20 500 K;通道核心温度和电晕温度均随时间变化不大;通道核心温度随通道上升呈减小趋势,而外围电晕温度随通道上升呈增大趋势。

关 键 词:闪电连续电流  光谱  电流核心通道  电晕通道  温度  
收稿时间:2021-04-10

Spectral Analysis and Study on the Channel Temperature of Lightning Continuing Current Process
WANG Xue-juan,XU Wei-qun,HUA Le-yan,WANG Hai-tong,LÜ Wei-tao,YANG Jing,YUAN Ping,ZHANG Qi-lin,ZHANG Yuan-kan.Spectral Analysis and Study on the Channel Temperature of Lightning Continuing Current Process[J].Spectroscopy and Spectral Analysis,2022,42(7):2069-2075.
Authors:WANG Xue-juan  XU Wei-qun  HUA Le-yan  WANG Hai-tong  LÜ Wei-tao  YANG Jing  YUAN Ping  ZHANG Qi-lin  ZHANG Yuan-kan
Abstract:Continuing current is an important sub-physical process of lightning discharge. It refers to the process in which the local charge center in the thunder cloud discharges to the ground through the original channel after the return stroke. It is also usually overlapped by the M-component, which is the phenomenon that the brightness of the glowing channel increases suddenly. Since the continuing current was discovered in the 20th century. Many kinds of research were made by domestic and foreign researchers. The present studies mainly reveal the macroscopic characteristics of the discharge and luminescence using electromagnetic and optical observations. There is a lack of studies on the microcosmic luminescence information and the physical characteristics used by spectral observation. There are few studies about the temperature in the discharge channel of the continuing current. However, the temperature is not only a basic parameter to analyze the physical properties of the continuing current discharge channel but also a concerned parameter to prevent lightning disasters caused by the continuing current. Based on the spectra of a first return stroke and the following continuing current process overlapped with three M-components for cloud-to-ground lightning recorded by a slit-less high-speed spectroscope, the spectral evolution properties during the entire discharge process have been analyzed. The temperatures in the channel core and the corona sheath have been calculated, and the variations of both along the channel height have been studied. The results show that in the stage of the return stroke, the channel optical radiations are mainly the NⅡ lines with higher excitation energy. In the continuing current process, the channel optical radiations are mainly the NⅠ and OⅠ lines with lower excitation energy. The intensity of the ionic lines is strongest at the initial stage of the return stroke, while the intensities of the Hα and the neutral atomic lines are strongest at M1, and the continuum spectrum is strongest at M2. Four lines of OⅠ 777.4, NⅠ 746.8, 821.6 and 868.3 nm in the near-infrared band were observed throughout the discharge process. During the continuing current, the temperatures in the channel core are 42 060~43 940 K, which are 6 020~7 900 K higher than the temperature in the channel core of the corresponding return stroke. The temperatures in the outside corona sheath are 16 170~20 500 K. The temperatures of the channel core, and the corona sheath both remain unchanged with time. The temperature of the channel core decreases with the increase of the channel height, while the temperature of the peripheral corona sheath increases with the increase of the channel height.
Keywords:Continuing current  Spectrum  Current-carrying channel  Corona sheath  Temperature  
点击此处可从《光谱学与光谱分析》浏览原始摘要信息
点击此处可从《光谱学与光谱分析》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号