首页 | 本学科首页   官方微博 | 高级检索  
     

基于卷积神经网络的智能制造过程质量异常诊断
引用本文:王宁,李盼盼,赵哲耘,杨剑锋. 基于卷积神经网络的智能制造过程质量异常诊断[J]. 运筹与管理, 2022, 31(6): 220-225. DOI: 10.12005/orms.2022.0205
作者姓名:王宁  李盼盼  赵哲耘  杨剑锋
作者单位:1.郑州大学 商学院,河南 郑州 450001;2.郑州大学 马克思主义学院,河南 郑州 450001;3.郑州大学 发展规划处,河南 郑州 450001
基金项目:国家社科基金资助项目(20BTJ059);国家自然科学基金资助项目(U1904211);河南省高等学校青年骨干教师培养项目(2021GGJS006)
摘    要:针对现有方法在智能制造过程中诊断能力有限和识别精度不高的问题,提出了一种与智能制造过程相适应的基于卷积神经网络的质量异常诊断模型。首先建立基于实时数据的过程质量图谱,以精准表达制造过程运行状态。其次,构建用于识别质量图谱的卷积神经网络诊断模型。最后,利用滑动窗口取值的方式对当前过程运行状态进行动态诊断,并通过某球磨过程验证了所提方法的有效性与实用性。结果表明,所提方法优于传统浅层模型,能够有效的对过程异常状态进行识别与诊断。

关 键 词:制造过程  卷积神经网络  质量图谱
收稿时间:2021-05-24

Quality Abnormal Recognition Model Based on Convolutional Neural Network
WANG Ning,LI Pan-pan,ZHAO Zhe-yun,YANG Jian-feng. Quality Abnormal Recognition Model Based on Convolutional Neural Network[J]. Operations Research and Management Science, 2022, 31(6): 220-225. DOI: 10.12005/orms.2022.0205
Authors:WANG Ning  LI Pan-pan  ZHAO Zhe-yun  YANG Jian-feng
Affiliation:1. Business School, Zhengzhou University, Zhengzhou 450001, China;2. School of Marxism, Zhengzhou University, Zhengzhou 450001, China;3. Department of Development and Planning Off, Zhengzhou University, Zhengzhou 450001, China
Abstract:Aiming at the problems of limited diagnostic ability and low recognition accuracy of existing methods in the intelligent manufacturing process, a quality anomaly diagnosis model based on convolutional neural network is proposed to adapt to intelligent manufacturing process. Firstly, the process quality spectra based on real-time data are established to accurately express the operating status of the manufacturing process. Secondly, a convolutional neural network diagnosis model is constructed to identify quality spectra. Finally, the dynamic diagnosis of the current process running state is carried out by using the sliding window value method, and the effectiveness and practicability of the proposed method are verified by a ball milling process. The results show that the proposed method is superior to the traditional shallow model and can effectively identify and diagnose abnormal process states.
Keywords:manufacturing process  convolutional neural network  quality spectra  
点击此处可从《运筹与管理》浏览原始摘要信息
点击此处可从《运筹与管理》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号