首页 | 本学科首页   官方微博 | 高级检索  
     检索      


ERROR ESTIMATES FOR SPARSE OPTIMAL CONTROL PROBLEMS BY PIECEWISE LINEAR FINITE ELEMENT APPROXIMATION
Authors:Xiaoliang Song  Bo Chen  Bo Yu
Abstract:Optimization problems with L1-control cost functional subject to an elliptic partial differential equation (PDE) are considered.However,different from the finite dimensional l1-regularization optimization,the resulting discretized L1-norm does not have a decoupled form when the standard piecewise linear finite element is employed to discretize the continuous problem.A common approach to overcome this difficulty is employing a nodal quadrature formula to approximately discretize the L1-norm.In this paper,a new discretized scheme for the L1-norm is presented.Compared to the new discretized scheme for L1-norm with the nodal quadrature formula,the advantages of our new discretized scheme can be demonstrated in terms of the order of approximation.Moreover,finite element error estimates results for the primal problem with the new discretized scheme for the L1-norm are provided,which confirms that this approximation scheme will not change the order of error estimates.To solve the new discretized problem,a symmetric Gauss-Seidel based majorized accelerated block coordinate descent(sGS-mABCD) method is introduced to solve it via its dual.The proposed sGS-mABCD algorithm is illustrated at two numerical examples.Numerical results not only confirm the finite element error estimates,but also show that our proposed algorithm is efficient.
Keywords:Finite element method  ABCD method  Approximate discretization  Error estimates
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《计算数学(英文版)》浏览原始摘要信息
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号