首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Spectroscopic characterization of the oxo-transfer reaction from a bis(mu-oxo)dicopper(III) complex to triphenylphosphine
Authors:Pavlova Svetlana V  Chen Kelvin H-C  Chan Sunney I
Institution:Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan.
Abstract:The oxygen-atom transfer reaction from the bis(mu-oxo)dicopper(III) complex Cu(III)(2)(mu-O)(2)(L)(2)](2+), where L =N,N,N',N' -tetraethylethylenediamine, to PPh(3) has been studied by UV-vis, EPR, (1)H NMR and Cu K-edge X-ray absorption spectroscopy in parallel at low temperatures (193 K) and above. Under aerobic conditions (excess dioxygen), 1 reacted with PPh(3), giving O=Ph(3) and a diamagnetic species that has been assigned to an oxo-bridged dicopper(II) complex on the basis of EPR and Cu K-edge X-ray absorption spectroscopic data. Isotope-labeling experiments ((18)O(2)) established that the oxygen atom incorporated into the triphenylphosphine oxide came from both complex 1 and exogenous dioxygen. Detailed kinetic studies revealed that the process is a third-order reaction; the rate law is first order in both complex 1 and triphenylphosphine, as well as in dioxygen. At temperatures above 233 K, reaction of 1 with PPh(3) was accompanied by ligand degradation, leading to oxidative N-dealkylation of one of the ethyl groups. By contrast, when the reaction was performed in the absence of excess dioxygen, negligible substrate (PPh(3)) oxidation was observed. Instead, highly symmetrical copper complexes with a characteristic isotropic EPR signal at g= 2.11 were formed. These results are discussed in terms of parallel reaction channels that are activated under various conditions of temperature and dioxygen.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号