首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Isothermal crystallization behavior of PP and PP-g-GMA copolymer at high undercooling
Authors:G M Shashidhara  S H Kameshawari Devi  S Preethi
Institution:1. Department Polymer Science and Technology, Sri Jayachamarajendra College of Engineering, Mysore, 570006, India
Abstract:The study involves synthesis of polypropylene grafted with glycidyl methacrylate (PP-g-GMA) using three different initiators, benzoyl peroxide, dicumyl peroxide and tertiary butyl cumyl peroxide (TBSP). Among the peroxides used, dicumyl peroxide resulted in considerable reduction of molecular weight of the resulting graft copolymer. The melting/crystallization behavior and isothermal crystallization kinetics of PP homopolymer and PP-g-GMA copolymers were studied with differential scanning calorimetry (DSC) at high undercooling (44–60°C). The results showed that the degree of crystallinity and overall crystallization rate of copolymers is greater than that of virgin PP. Among the three initiators used, TBCP exhibited lowest half crystallization time. The isothermal crystallization kinetics of the PP and copolymers was described with the Avrami equation and Sestak-Berggren (SB) equation. The Avrami exponent n of the PP and copolymers were found to be in the range 1.03 to 1.41 at high undercooling conditions employed in this study. The agreement between the values of n calculated from SB kinetics and Avrami equation is satisfactory with few exceptions. The crystallization rate of PP-g-GMA copolymer was found to be more sensitive to temperature. The isothermally crystallized samples showed a single melting peak for PP while a double peak at lower temperature was recorded for PP-g-GMA copolymer samples. The equilibrium melting point was deduced according to Hoffman-Weeks theory. The decrease of recorded for the PP modified with GMA suggests that the thermodynamic stability of the PP crystals is influenced by the chemical interactions.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号