首页 | 本学科首页   官方微博 | 高级检索  
     


An Efficient Parallel Reverse Conversion of Residue Code to Mixed-Radix Representation Based on the Chinese Remainder Theorem
Authors:Mikhail Selianinau  Yuriy Povstenko
Affiliation:Department of Mathematics and Computer Sciences, Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, al. Armii Krajowej 13/15, 42-200 Czestochowa, Poland;
Abstract:In this paper, we deal with the critical problems in residue arithmetic. The reverse conversion from a Residue Number System (RNS) to positional notation is a main non-modular operation, and it constitutes a basis of other non-modular procedures used to implement various computational algorithms. We present a novel approach to the parallel reverse conversion from the residue code into a weighted number representation in the Mixed-Radix System (MRS). In our proposed method, the calculation of mixed-radix digits reduces to a parallel summation of the small word-length residues in the independent modular channels corresponding to the primary RNS moduli. The computational complexity of the developed method concerning both required modular addition operations and one-input lookup tables is estimated as Ok2/2, where k equals the number of used moduli. The time complexity is Olog2k modular clock cycles. In pipeline mode, the throughput rate of the proposed algorithm is one reverse conversion in one modular clock cycle.
Keywords:Residue Number System   modular arithmetic   residue-to-binary conversion   Chinese Remainder Theorem   mixed-radix representation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号