首页 | 本学科首页   官方微博 | 高级检索  
     

生长曲线模型的分位数回归
引用本文:张雨,刘倩,曾林蕊. 生长曲线模型的分位数回归[J]. 应用概率统计, 2014, 30(3): 296-302
作者姓名:张雨  刘倩  曾林蕊
作者单位:四川大学数学学院, 华东师范大学金融与统计学院
摘    要:生长曲线模型有着广泛的应用,在经济学、生物学、医学等各个领域的研究都起着重要的作用.已有文献关于生长曲线模型参数矩阵的估计基本上是使用最小二乘方法或极大似然方法.使用最小二乘方法, 当误差项服从偏峰分布、厚尾分布、或者存在异常点时,得出的估计不是有效的; 使用极大似然方法, 要求分布已知, 实际使用时很难满足这一点.分位数回归能弥补如上这些缺陷, 所得估计具有很好的稳健性.本文使用分位数回归方法给出生长曲线模型参数矩阵的估计, 及其渐近正态性.

关 键 词:生长曲线模型  分位数回归  渐近正态性.

Quantile Regression for Growth Curve Model
Zhang Yu,Liu Qian,Zeng Linrui. Quantile Regression for Growth Curve Model[J]. Chinese Journal of Applied Probability and Statisties, 2014, 30(3): 296-302
Authors:Zhang Yu  Liu Qian  Zeng Linrui
Affiliation:College of Mathematics, Sichuan University; School of Finance and Statistics, East China Normal University
Abstract:Growth curve model has broad application background,and plays an important role in some fields such as economics, biology, medicalresearch. Many of existing estimation of its parameter matrix have beenobtained based on the least squares method or maximum likelihood method.When distribution of the error term is partial peak, or heavy tail, or thereexist outliers, estimation obtained by least square method will be invalid.The distribution of the error must be known in maximum likelihood estimation,which is often not satisfied. Quantile regression method can compensate forthese defects and the estimation has good robustness. In this paper, quantileregression is used to give the estimation of growth curve model, and itsasymptotic normality.
Keywords:
点击此处可从《应用概率统计》浏览原始摘要信息
点击此处可从《应用概率统计》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号