首页 | 本学科首页   官方微博 | 高级检索  
     


Transfer of electrolyte ions and water dissociation in anion-exchange membranes under intense current conditions
Authors:V. I. Zabolotskii  V. V. Bugakov  M. V. Sharafan  R. Kh. Chermit
Affiliation:1. Kuban State University, ul. Stavropol??skaya 149, Krasnodar, 350040, Russia
Abstract:Polarization characteristics of electromembrane systems (EMS) based on the Russian commercial heterogeneous membranes MA-40 and MA-41, the anion-exchange heterogeneous membrane AMH (Mega, Czech Republic), and the modified membrane MA-40M are studied by the method of rotating membrane disk in dilute sodium chloride solutions. The effective transport numbers of ions are found; the partial voltammetric characteristics (VAC) with respect to chloride and hydroxyl ions are measured; the limiting current densities are calculated as a function of the membrane disk rotation rate. In terms of the theory of the overlimiting state of EMS, based on experimental VAC and the dependences of the effective transport numbers on the current density, the following internal parameters of systems under study are calculated: the space charge and electric field strength distribution over the diffusion layer and the membrane. It is shown that water dissociation can be virtually completely eliminated by substituting chemically stable quaternary ammonium groups inert with respect to water dissociation in the surface layer of a heterogeneous anion-exchange membrane MA-40 for the active ternary and secondary functional amino groups. The maximum electric field strength values at the membrane/solution interface, which were found in the framework of the theory of over-limiting state, turned out to be close for all anion-exchange membranes studied, namely, (7?C9) × 106 V/cm. This suggests that it is the nature of ionogenic groups in the surface layer rather than the field effect that plays the decisive role in the membrane ability to accelerate the water dissociation reaction. It is proved experimentally that in highly intense current modes of the electrodialysis process, the thermal hydrolysis of quaternary ammonium bases occurs in strongly basic MA-41 and AMH membranes by the Hofmann reaction to form ternary amino groups catalytically active in water dissociation reaction. Based on the concept on the catalytic mechanism of water dissociation, the fraction of ternary amino groups formed by thermal hydrolysis in the surface layer (the space charge region) of monopolar anion-exchange membranes MA-41 and AMH is assessed quantitatively as 0.7 and 6.5%, respectively.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号