首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Real-time onboard wind and windshear determination,part 1: Identification
Authors:A Miele  T Wang  W W Melvin
Institution:(1) Aero-Astronautics Group, Rice University, Houston, Texas;(2) Delta Airlines, Atlanta, Georgia;(3) Airworthiness and Performance Committee, Air Line Pilots Association, Washington, DC
Abstract:Standard wind identification techniques employed in the analysis of aircraft accidents are post-facto techniques; they are processed after the event has taken place and are based on the complete time histories of the DFDR/ATCR data along the entire trajectory. By contrast, real-time wind identification techniques are processed while the event is taking place; they are based solely on the knowledge of the preceding time histories of the DFDR/ATCR data.In this paper, a real-time wind identification technique is developed. First, a 3D-kinematic approach is employed in connection with the DFDR/ATCR data covering the time interval tau preceding the present time instant. The aircraft position, inertial velocity, and accelerometer bias are determined by matching the flight trajectory computed from the DFDR data with the flight trajectory available from the ATCR data. This leads to a least-square problem, which is solved analytically every beta seconds, with beta/tau small.With the inertial velocity and accelerometer bias known, an extrapolation process takes place so as to predict the inertial velocity profile over the subsequent beta-subinterval. At the end of this subinterval, the extrapolated inertial velocity and the newly identified inertial velocity are statistically reconciled and smoothed. Then, the process of identification, extrapolation, reconciliation, and smoothing is repeated. Subsequently, the wind is computed as the difference between the inertial velocity and the airspeed, which is available from the DFDR data. With the wind identified, windshear detection can take place (Ref. 1).As an example, the real-time wind identification technique is applied to Flight Delta 191, which crashed at Dallas-Fort Worth International Airport on August 2, 1985. The numerical results show that the wind obtained via real-time identification is qualitatively and quantitatively close to the wind obtained via standard identification. This being the case, it is felt that real-time wind identification can be useful in windhsear detection and guidance, above all if the shear/downdraft factor signal is replaced by the wind difference signal (Ref. 1).This paper and its companion (Ref. 1) are based on Refs. 2–4.This research was supported by the Aviation Research and Education Foundation and by Texas Advanced Technology Program, Grant No. TATP-003604020.
Keywords:Wind identification  real-time wind identification  wind detection  detection systems  windshear problems  take-off  abort landing  penetration landing  optimal trajectories  guidance trajectories
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号