Step structure on the fivefold Al-Pd-Mn quasicrystal surface, and on related surfaces |
| |
Authors: | J. Ledieu R. McGrath Q. Chen T.A. Lograsso K.J. Caspersen B. Unal P.A. Thiel |
| |
Affiliation: | a Surface Science Research Centre, The University of Liverpool, Liverpool L69 3BX, United Kingdom b School of Chemistry, University of St. Andrews, North Haugh KY16 9ST, United Kingdom c Departments of Chemistry, Materials Science and Engineering, and Mathematics, and Ames Laboratory, Iowa State University, Ames, IA 50011, USA |
| |
Abstract: | We compare step morphologies on surfaces of Al-rich metallic alloys, both quasicrystalline and crystalline. We present evidence that the large-scale step structure observed on Al-rich quasicrystals after quenching to room temperature reflects equilibrium structure at an elevated temperature. These steps are relatively rough, i.e., have high diffusivity, compared to those on crystalline surfaces. For the fivefold quasicrystal surface, step diffusivity increases as step height decreases, but this trend is not obeyed in a broader comparison between quasicrystals and crystals. On a shorter scale, the steps on Al-rich alloys tend to exhibit local facets (short linear segments), with different facet lengths, a feature which could develop during quenching to room temperature. Facets are shortest and most difficult to identify for the fivefold quasicrystal surface. |
| |
Keywords: | Equilibrium thermodynamics and statistical mechanics Scanning tunneling microscopy (STM) Step formation and bunching Alloys Stepped single crystal surfaces |
本文献已被 ScienceDirect 等数据库收录! |
|