首页 | 本学科首页   官方微博 | 高级检索  
     

核覆盖算法在光谱分类问题中的研究
引用本文:杨金福,许馨,吴福朝,赵永恒. 核覆盖算法在光谱分类问题中的研究[J]. 光谱学与光谱分析, 2007, 27(3): 602-605
作者姓名:杨金福  许馨  吴福朝  赵永恒
作者单位:中国科学院自动化研究所国家模式识别实验室,北京,100080;中国科学院国家天文台,北京,100012
基金项目:国家高技术研究发展计划(863计划) , 国家重大科学工程项目
摘    要:针对光谱分类,提出了一种基于核技巧的覆盖算法——核覆盖算法。该算法将核技巧与覆盖算法相结合,并在特征空间中抽取支持向量。实验表明核覆盖算法在光谱分类中的精度与SVM相差不大,但是它只涉及距离的计算,不必象SVM那样求解二次规划问题,对于核宽的选择也不象SVM那样非常敏感。核覆盖算法与覆盖算法相比分类性能相当,它的优势在于引入的非线性映射Φ改变了样本集在特征空间中之间的距离关系,使得核覆盖算法得到的支持向量个数大大少于覆盖算法。

关 键 词:光谱分类  核覆盖算法  支持向量机  核技巧
文章编号:1000-0593(2007)03-0602-04
收稿时间:2005-12-06
修稿时间:2006-03-28

Studies of Spectra Classification Based on Kernel Covering Algorithm
YANG Jin-fu,XU Xin,WU Fu-chao,ZHAO Yong-heng. Studies of Spectra Classification Based on Kernel Covering Algorithm[J]. Spectroscopy and Spectral Analysis, 2007, 27(3): 602-605
Authors:YANG Jin-fu  XU Xin  WU Fu-chao  ZHAO Yong-heng
Affiliation:1. National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100080,China2. National Astronomical Observatory, Chinese Academy of Sciences, Beijing 100012, China
Abstract:A kernel based covering algorithm,called the kernel covering algorithm(KCA), is proposed for the classification of celestial spectra.This algorithm is a combination of kernel trick with the covering algorithm,and is used to extract the support vectors in feature space.The experiments show that the classification result based on KCA is a little less than that based on SVM.However,KCA only involves the distance computation without the need to solve the quadratic programming problem.Also,KCA is insensitive to the width of gauss window.Although KCA has a comparable classification performance with the covering algorithm,it changes the distance between samples in feature space by the nonlinear mapping such that the distribution of samples is more adaptable to classify.Therefore,the number of KCA's resulting support vectors is significantly smaller than that of the covering algorithm.
Keywords:Spectra classification   Kernel covering algorithm   SVM   Kernel technique
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《光谱学与光谱分析》浏览原始摘要信息
点击此处可从《光谱学与光谱分析》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号