首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Proton transfer to nickel-thiolate complexes. 1. Protonation of [Ni(SC(6)H(4)R-4)(2)(Ph(2)PCH(2)CH(2)PPh(2))] (R = Me, MeO, H, Cl, or NO(2))
Authors:Autissier Valerie  Clegg William  Harrington Ross W  Henderson Richard A
Institution:Chemistry, School of Natural Sciences, University of Newcastle, Newcastle upon Tyne, NE1 7RU UK.
Abstract:The kinetics of the equilibrium reaction between Ni(SC(6)H(4)R-4)(2)(dppe)] (R= MeO, Me, H, Cl, or NO(2); dppe = Ph(2)PCH(2)CH(2)PPh(2)) and mixtures of lutH](+) and lut (lut = 2,6-dimethylpyridine) in MeCN to form Ni(SHC(6)H(4)R-4)(SC(6)H(4)R-4)(dppe)](+) have been studied using stopped-flow spectrophotometry. The kinetics for the reactions with R = MeO, Me, H, or Cl are consistent with a single-step equilibrium reaction. Investigation of the temperature dependence of the reactions shows that DeltaG = 13.6 +/- 0.3 kcal mol(-)(1) for all the derivatives but the values of DeltaH and DeltaS vary with R (R = MeO, DeltaH() = 8.5 kcal mol(-)(1), DeltaS = -16 cal K(-)(1) mol(-)(1); R = Me, DeltaH() = 10.8 kcal mol(-)(1), DeltaS = -9.5 cal K(-)(1) mol(-)(1); R = Cl, DeltaH = 23.7 kcal mol(-)(1), DeltaS = +33 cal K(-)(1) mol(-)(1)). With Ni(SC(6)H(4)NO(2)-4)(2)(dppe)] a more complicated rate law is observed consistent with a mechanism in which initial hydrogen-bonding of lutH](+) to the complex precedes intramolecular proton transfer. It seems likely that all the derivatives operate by this mechanism, but only with R = NO(2) (the most electron-withdrawing substituent) does the intramolecular proton transfer step become sufficiently slow to result in the change in kinetics. Studies with lutD](+) show that the rates of proton transfer to Ni(SC(6)H(4)R-4)(2)(dppe)] (R = Me or Cl) are associated with negligible kinetic isotope effect. The possible reasons for this are discussed. The rates of proton transfer to Ni(SC(6)H(4)R-4)(2)(dppe)] vary with the 4-R-substituent, and the Hammett plot is markedly nonlinear. This unusual behavior is attributable to the electronic influence of R which affects the electron density at the sulfur.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号