首页 | 本学科首页   官方微博 | 高级检索  
     


Squirt-Flow in Fluid-Saturated Porous Media: Propagation of Rayleigh Waves
Authors:M.  D. Sharma
Affiliation:1.Department of Mathematics,Kurukshetra University,Kurukshetra,India
Abstract:Propagation of attenuated waves is studied in a squirt-flow model of porous solid permeated by two different pore regimes saturated with same viscous fluid. Presence of soft compliant microcracks embedded in the grains of stiff porous rock defines the double-porosity formation. Microcracks and pores respond differently to the compressional effect of a propagating wave, which induces the squirt-flow from microcracks to pores. Elastodynamics of constituent particles in porous aggregate is represented through a single-porosity formulation, which involves the frequency-dependent complex moduli. This formulation is deduced as a special case of double-porosity formation allowing the wave-induced flow of pore-fluid. This squirt-flow model of porous solid supports the attenuated propagation of two compressional waves and one shear wave. Superposition of these body waves, subject to stress-free surface, defines the propagation of Rayleigh wave. This wave is governed by a complex irrational dispersion equation, which is solved numerically after rationalising into an algebraic equation. For existence of Rayleigh wave, a complex solution of the dispersion equation should represent a leaky wave, which decays for propagation along any direction in the semi-infinite medium. A numerical example is solved to analyse the effects of squirt-flow on phase velocity, attenuation and polarisation of the Rayleigh waves, for different combinations of parameters. Numerical results suggest the existence of an additional (second) Rayleigh wave in the squirt-flow model of dissipative porous solids.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号