首页 | 本学科首页   官方微博 | 高级检索  
     检索      

基于分子动力学模拟的TRPM8通道门控特性分析
引用本文:高志伟,李军委,史赛,付强,贾钧儒,安海龙.基于分子动力学模拟的TRPM8通道门控特性分析[J].高等学校化学学报,2022,43(6):20220080.
作者姓名:高志伟  李军委  史赛  付强  贾钧儒  安海龙
作者单位:1.河北工业大学理学院;2.生命科学与健康工程学院, 生物物理研究所, 河北省分子生物物理重点实验室, 天津 300401
基金项目:国家自然科学基金(11647121);河北省自然科学基金(F2021202001);河北省留学引进人员资助项目(C20210337)
摘    要:TRPM8通道的温度感知等生理功能依赖于正常的门控, 但现有晶体结构中S6跨膜螺旋C末端形成的门控结构存在氨基酸缺失, 所以其门控特性未能揭晓. 本文基于已有的晶体结构和AlphaFold算法构建了 11个完整不同构象的TRPM8通道, 发现其S6跨膜螺旋C末端构成的门控存在回环和螺旋2种构象. 在回环构象中, 多个氨基酸参与形成阻碍离子通透的孔道区; 而在螺旋构象中, 仅有关键氨基酸V956发挥门控作用. 由于回环构象的柔性大于螺旋构象, 导致回环构象参与阻碍离子通透的关键氨基酸构象和数量变化多样. 二级结构预测与模建结果表明, S6跨膜螺旋C末端存在回环构象向螺旋构象的转变, 此过程中柔性的回环构象结构域向胞外侧上移, 关键氨基酸向孔道衬外扭转, 增强了与相邻跨膜螺旋S5的相互作用以及S5与TRP螺旋之间的相互作用, 进而形成刚性、 稳定且有序的螺旋构象. 这增加了TRPM8通道各结构域间的协同性, 使能量信息更高效地传递到门控结构域, 为TRPM8通道开启蓄势.

关 键 词:TRPM8通道  门控  同源模建  分子动力学模拟  
收稿时间:2022-02-08

Analysis of Gating Characteristics of TRPM8 Channel Based on Molecular Dynamics
GAO Zhiwei,LI Junwei,SHI Sai,FU Qiang,JIA Junru,AN Hailong.Analysis of Gating Characteristics of TRPM8 Channel Based on Molecular Dynamics[J].Chemical Research In Chinese Universities,2022,43(6):20220080.
Authors:GAO Zhiwei  LI Junwei  SHI Sai  FU Qiang  JIA Junru  AN Hailong
Institution:1.School of Science;2.Institute of Biophysics,School of Health Sciences & Biomedical Engineering,Hebei University of Technology,Tianjin 300401,China
Abstract:Physiological functions of TRPM8 channel, such as temperature sensing, depend on normal gating. Due to the lack and insufficient number of existing crystal structures, the gating characteristics of TRPM8 channels need to be further explored. Therefore, 11 TRPM8 channels with different conformations were constructed, basing on the existing crystal structure and AlphaFold algorithm. It was found that there were two different architectural in the S6 transmembrane helical bundle crossing domain(gating): loop state and helix state. At the loop state, multiple amino acids participated in the formation of pore regions that hinder ion permeability, while in the helical architecture. Only the key amino acid V956 played a gating role. Because the flexibility of the gated loop architecture was greater than that of the helical, and the number of key amino acids involved in gating was different. The secondary structure prediction showed that the loop architecture could change to the helical. In this process, the flexible loop domain moved upward to the outside of the cell, and the gated amino acids twisted to the outside of the pore lining. At the same time, the interaction with the adjacent transmembrane S5 helix was enhanced, and a rigid, stable and orderly helical architecture was formed. This promoted the coordination between the various domains of TRPM8 channel, enabled energy and information to be transmitted to the bundle crossing more efficiently, which was conducive to channel opening.
Keywords:TRPM8 channel  Gating mechanism  Homology modeling  Molecular dynamics simulation  
点击此处可从《高等学校化学学报》浏览原始摘要信息
点击此处可从《高等学校化学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号