首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Rheological and sensory properties of toothpastes
Authors:Amit?Ahuja  Email author" target="_blank">Andrei?PotaninEmail author
Institution:1.Colgate-Palmolive Company,Piscataway,USA
Abstract:Complex rheological trends of several commercially available and lab-made prototype toothpastes are reported. The flow curves are generated using the rotational rheometers with a series of rheological procedures, comprising of stress ramps, creep-recovery, stepped-shear rates, and dynamic oscillatory strain sweeps performed on toothpastes. Intricacies due to the history and the effects of pre-conditioning of the samples are discussed. However, the main goal of this work was to identify the correlations between the rheological measurements and the consumer-perceived properties of toothpastes. Shape retention and stringiness are the main sensory properties of interest that were identified and evaluated by the panelists. A custom-built experimental setup is used to quantify shape retention of a toothpaste ribbon on a brush and on a flat surface in a test which resonates with the popular slump test. It is demonstrated that the degree of shape retention correlates with the yield stress and the instantaneous viscosity. A comparison of yield stresses obtained using different methods in relation to degree of shape retention is presented. An experimental setup designed to measure stringiness of toothpastes is delineated. The stringiness measured with this device correlates well with human perception and also with the slope of the flow curve, i.e., the higher the degree of shear thinning, the less stringy the pastes tend to be. For lab-made prototype toothpastes, basic structure-property relations are established in terms of correlations between the three formulation variables: thickening silica, Xanthan gum, and carboxymethyl cellulose (CMC).
Graphical abstract Two important consumer perceived properties of toothpastes: shape retention and stringiness
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号