首页 | 本学科首页   官方微博 | 高级检索  
     


Vector extrapolation enhanced TSVD for linear discrete ill-posed problems
Authors:K. Jbilou  L. Reichel  H. Sadok
Affiliation:(1) Laboratoire de Mathématiques Pures et Appliquées, Université du Littoral, Centre Universtaire de la Mi-Voix, Batiment H. Poincarré, 50 Rue F. Buisson, BP 699, 62228 Calais cedex, France;(2) Department of Mathematical Sciences, Kent State University, Kent, OH 44242, USA
Abstract:
The truncated singular value decomposition (TSVD) is a popular solution method for small to moderately sized linear ill-posed problems. The truncation index can be thought of as a regularization parameter; its value affects the quality of the computed approximate solution. The choice of a suitable value of the truncation index generally is important, but can be difficult without auxiliary information about the problem being solved. This paper describes how vector extrapolation methods can be combined with TSVD, and illustrates that the determination of the proper value of the truncation index is less critical for the combined extrapolation-TSVD method than for TSVD alone. The numerical performance of the combined method suggests a new way to determine the truncation index. In memory of Gene H. Golub.
Keywords:Ill-posed problem  Truncated singular value decomposition  Vector extrapolation  Truncation criterion
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号