首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Reaction kinetics analysis to estimate in vivo decay rate of EPR signals of a nitroxide radical in the brain and the inferior vena cava of rats
Authors:Email author" target="_blank">H?YokoyamaEmail author  M?Tada  O?Itoh  K?Fukui
Institution:1.Institute for Life Support Technology,Yamagata Public Corporation for Development of Industry,Yamagata,Japan;2.Regional Joint Research Project of Yamagata Prefecture,Japan Science and Technology Corporation,Yamagata,Japan
Abstract:To clarify the degree of the influence of the peripheral organs on the temporal changes in the electron paramagnetic resonance (EPR) signal intensity of a nitroxide radical permeating the blood-brain barrier, 3-hydroxymethyl-2,2,5,5-tetramethylprrolidine-1-oxyl (hydroxymethyl-PROXYL), in the brain, temporal changes in the EPR signal in the brain or inferior vena cava of rats were measured by an in vivo 700 MHz radio-frequency EPR spectrometer equipped with a bridged loop-gap resonator or a surface-coil-type resonator. In all measurements, good linearity was observed on semilogarithmic plots of the signal intensity against time after the hydroxymethyl-PROXYL injection. From these plots, the reaction rate and the initial level of hydroxymethyl-PROXYL in the brain and the vena cava were calculated. A mathematical model expressing the nitroxide radical concentration in the brain, which is connected to other organs via the circulatory system, was made. With this model and the results of the EPR measurements, the degrees of influence of the nitroxide reduction in the brain and the other organs were simulated. It was found that the reaction rate (equal to log2/half-life) of hydroxymethyl-PROXYL observed in the brain reflected the reduction of hydroxymethyl-PROXYL there and was not influenced by the reduction in other organs.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号