首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Three-dimensional studies on bicomponent extrusion
Authors:A Karagiannis  A N Hrymak  J Vlachopoulos
Institution:(1) Department of Chemical Engineering, McMaster University, 1280 Main Street West, L8S 4L7 Hamilton, Ontario, Canada
Abstract:The present work is concerned with the mathematical modelling and numerical simulation of three-dimensional (3-D) bicomponent extrusion. The objective is to provide an understanding of the flow phenomena involved and to investigate their impact on the free surface shape and interface configuration of the extruded article. A finite element algorithm for the 3-D numerical simulation of bicomponent stratified free surface flows is described. The presence of multiple free surfaces (layer interface and external free surfaces) requires special free surface update schemes. The pressure and viscous stress discontinuity due to viscosity mismatch at the interface between the two stratified components is handled with both a double node (u–v–w–P 1 –P 2 –h 1 –h 2) formulation and a penalty function (u–v–w–P–h 1 –h 2) formulation.The experimentally observed tendency of the less viscous layer to encapsulate the more viscous layer in stratified bicomponent flows of side-by-side configuration is established with the aid of a fully 3-D analysis in agreement with experimental evidence. The direction and degree of encapsulation depend directly on the viscosity ratio of the two melts. For shear thinning melts exhibiting a viscosity crossover point, it is demonstrated that interface curvature reversal may occur if the shearing level is such that the crossover point is exceeded. Extrudate bending and distortion of the bicomponent system because of the viscosity mismatch is shown. For flows in a sheath-core configuration it is shown that the viscosity ratio may have a severe effect on the swelling ratio of the bicomponent system.Modelling of the die section showed that the boundary condition imposed at the fluid/fluid/wall contact point is critical to the accuracy of the overall solution.
Keywords:Bicomponentextrusion  free surfaceflows  finite element method  three-dimensional (3-D)-flows  dieextrusion
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号