Abstract: | ![]() We have introduced the techniques of phase-shifting interferometry into a laser feedback interference microscope based on a helium-neon laser. With moderate feedback, multiple reflections between the sample and the laser are shown to be negligible, and the interferometer responds sinusoidally with a well-characterized fringe modulation. One can obtain higher signal-to-noise ratios by determining the number of additional terms required for modeling the effect of multiple reflections on the phase and visibility measurements in the high-feedback regime. Changes in optical path length are determined with nanometer precision without phase averaging or lock-in detection. |