首页 | 本学科首页   官方微博 | 高级检索  
     


Activity of microemulsion-based nanoparticles at the human bio-nano interface: concentration-dependent effects on thrombosis and hemolysis in whole blood
Authors:Morey  Timothy E.  Varshney  Manoj  Flint  Jason A.  Seubert  Christoph N.  Smith  W. Brit  Bjoraker   David G.  Shah  Dinesh O.  Dennis  Donn M.
Affiliation:(1) Departments of Anesthesiology, Chemical Engineering, and Pharmacology & Experimental Therapeutics, The Engineering Research Center for Particle Science & Technology, University of Florida, P.O. Box 100254, 1600 S.W. Archer Road, Gainesville, FL 32610-0254, USA
Abstract:Background: Although microemulsion-based nanoparticles (MEs) may be useful for drug delivery or scavenging, these benefits must be balanced against potential nanotoxicological effects in biological tissue (bio-nano interface). We investigated the actions of assembled MEs and their individual components at the bio-nano interface of thrombosis and hemolysis in human blood.Methods: Oil-in-water MEs were synthesized using ethylbutyrate, sodium caprylate, and pluronic F-68 (ME4) or F-127 (ME6) in 0.9% NaClw/v. The effects of MEs or components on thrombosis were determined using thrombo-elastography, platelet contractile force, clot elastic modulus, and platelet counting. For hemolysis, ME or components were incubated with erythrocytes, centrifuged, and washed for measurement of free hemoglobin by spectroscopy.Results and conclusions: The mean particle diameters (polydispersity index) for ME6 and ME4 were 23.6 ± 2.5 nm (0.362) and 14.0 ± 1.0 nm (0.008), respectively. MEs (0, 0.03, 0.3, 3 mM) markedly reduced the thromboelastograph maximal amplitude in a concentration-dependent manner (49.0 ± 4.2, 39.0 ± 5.6, 15.0 ± 8.7, 3.8 ± 1.3 mm, respectively), an effect highly correlated (r2 = 0.94) with similar changes caused by pluronic surfactants (48.7 ± 10.9, 30.7 ± 15.8, 20.0 ± 11.3, 2.0 ± 0.5) alone. Neither oil nor sodium caprylate alone affected the thromboelastograph. The clot contractile force was reduced by ME (27.3 ± 11.1–6.7 ± 3.4 kdynes/cm2, P = 0.02, n = 5) whereas the platelet population not affected (175 ± 28–182 ± 23 106/ml, P = 0.12, n = 6). This data suggests that MEs reduced platelet activity due to associated pluronic surfactants, but caused minimal changes in protein function necessary for coagulation. Although pharmacological concentrations of sodium caprylate caused hemolysis (EC50 = 213 mM), MEs and pluronic surfactants did not disrupt erythrocytes. Knowledge of nanoparticle activity and potential associated nanotoxicity at this bio-nano interface enables rational ME design for in vivo applications.
Keywords:hemolysis  human  microemulsion  nanoparticle  surfactant  thrombosis
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号