首页 | 本学科首页   官方微博 | 高级检索  
     


The influence of constitutional isomerism and change on molecular recognition processes
Authors:Williams Avril R  Northrop Brian H  Houk Kendall N  Stoddart J Fraser  Williams David J
Affiliation:California NanoSystems Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095-1569, USA.
Abstract:Three constitutionally isomeric bis(naphthylmethyl)ammonium ions, in which the two naphthyl groups are substituted 1) both at their 1-positions, 2) one at its 1-position and the other at its 2-position, and 3) both at their 2-positions, have been investigated separately in solution for their propensities to undergo spontaneous self-assembly with three different [24]crown-8 derivatives, namely, pyrido[24]crown-8 (P24C8), dipyrido[24]crown-8 (DP24C8) and dibenzo[24]crown-8 (DB24C8), in turn to form [2]pseudorotaxanes. The strengths of the 1:1 complexes depend on the composition of the secondary dialkylammonium ions and on the nature of the crown ether hosts; generally, as far as the guest cation is concerned, the 1/1- and 2/2-isomers form stronger complexes, as indicated by stability constant measurements, than the 1/2-isomer and, as far as the crown ethers are concerned, the more flexible P24C8 is a much more efficient host than either DP24C8 or DB24C8. The rates of formation of the [2]pseudorotaxanes are fast (i.e., taking no more than a few minutes) in solution with the exception of one case, that is, in which the crown ether host is DB24C8 and the guest cation is the 1/1-isomer, when it can take upwards of one month for the complexation-decomplexation equilibrium to be established at room temperature. In all cases, the equilibrium between complexed and uncomplexed species is slow on the NMR timescale, allowing the determination of stability constants to be made readily using the single-point method. X-ray crystallography and molecular modeling have been used to gain insight into ground and transition state interactions, respectively, in some of the [2]pseudorotaxanes. The relative stabilities of the three [2]pseudorotaxanes formed by each guest cation in the presence of the three crown ether hosts were also evaluated in solution by competition experiments that were monitored by (1)H NMR spectroscopy. By and large the results of the competition experiments could be predicted on the basis of the derived stability constants for the individual [2]pseudorotaxanes.
Keywords:crown compounds  dynamic covalent chemistry  pseudorotaxanes  self‐assembly  supramolecular chemistry
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号