Abstract: | In order to determine the applicability of vapor pressure studies on polymorphic modifications, pairs of enantiotropically related modifications of caffeine, theophylline and carbamazepine were investigated. The studies were performed over a wide temperature range (71 to 191°C) and accordingly over a wide vapor pressure range (0.02 to 400 Pa) using an automatic instrument constructed on the basis of the gas saturation principle. This instrument enables an analytical determination of the main component and the impurities present by the chromatographic separation of the substances transported in the gas flow. Therefore, the real partial pressure of the main component can be measured. Due to the high precision of the applied method it was possible to determine partial pressure curves and the thermodynamic transition temperature — the point at which the vapor pressure of two crystal polymorphs is equal. The thermodynamic transition temperatures of caffeine and theophylline were determined to be 136 and 232°C, respectively. These values are in agreement with experimental or calculated values derived from DSC investigations but are more reliable. Vapor pressure measurements of carbamazepine are only meaningful in the low temperature range due to its decomposition at high temperatures. The thermodynamics, advantages and limits of vapor pressure determinations of polymorphic modifications are discussed.This revised version was published online in November 2005 with corrections to the Cover Date. |