首页 | 本学科首页   官方微博 | 高级检索  
     


Adsorption and protonation of CO2 on partially hydroxylated gamma-Al2O3 surfaces: a density functional theory study
Authors:Pan Yunxiang  Liu Chang-jun  Ge Qingfeng
Affiliation:Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL 62901, USA.
Abstract:
Adsorption and protonation of CO2 on the (110) and (100) surfaces of gamma-Al2O3 have been studied using density functional theory slab calculations. On the dry (110) and (100) surfaces, the O-Al bridge sites were found to be energetically favorable for CO2 adsorption. The adsorbed CO2 was bound in a bidentate configuration across the O-Al bridge sites, forming a carbonate species. The strongest binding with an adsorption energy of 0.80 eV occurs at the O3c-Al5c bridge site of the (100) surface. Dissociation of water across the O-Al bridge sites resulted in partially hydroxylated surfaces, and the dissociation is energetically favorable on both surfaces. Water dissociation on the (110) surface has a barrier of 0.42 eV, but the same process on the (100) surface has no barrier with respect to the isolated water molecule. On the partially hydroxylated gamma-Al2O3 surfaces, a bicarbonate species was formed by protonating the carbonate species with the protons from neighboring hydroxyl groups. The energy difference between the bicarbonate species and the coadsorbed bidentate carbonate species and hydroxyls is only 0.04 eV on the (110) surface, but the difference reaches 0.97 eV on the (100) surface. The activation barrier for forming the bicarbonate species on the (100) surface, 0.42 eV, is also lower than that on the (110) surface (0.53 eV).
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号