Rainbow hamilton cycles in random graphs |
| |
Authors: | Po‐Shen Loh |
| |
Affiliation: | Department of Mathematical Sciences, Carnegie Mellon University, , Pittsburgh, Pennsylvania, 15213 |
| |
Abstract: | One of the most famous results in the theory of random graphs establishes that the threshold for Hamiltonicity in the Erd?s‐Rényi random graph Gn,p is around . Much research has been done to extend this to increasingly challenging random structures. In particular, a recent result by Frieze determined the asymptotic threshold for a loose Hamilton cycle in the random 3‐uniform hypergraph by connecting 3‐uniform hypergraphs to edge‐colored graphs. In this work, we consider that setting of edge‐colored graphs, and prove a result which achieves the best possible first order constant. Specifically, when the edges of Gn,p are randomly colored from a set of (1 + o(1))n colors, with , we show that one can almost always find a Hamilton cycle which has the additional property that all edges are distinctly colored (rainbow).Copyright © 2013 Wiley Periodicals, Inc. Random Struct. Alg., 44, 328‐354, 2014 |
| |
Keywords: | Hamilton cycles random graphs coloring |
|
|