Adaptive neural network control for coordinated motion of a dual-arm space robot system with uncertain parameters |
| |
Authors: | Yi-shen Guo틦짮 Li Chen |
| |
Affiliation: | College of Mechanical Engineering,Fuzhou University,Fuzhou 350002,P.R.China |
| |
Abstract: | Control of coordinated motion between the base attitude and the arm joints of a free-floating dual-arm space robot with uncertain parameters is discussed.By combining the relation of system linear momentum conversation with the Lagrangian approach,the dynamic equation of a robot is established.Based on the above results,the free-floating dual-arm space robot system is modeled with RBF neural networks,the GL matrix and its product operator.With all uncertain inertial system parameters,an adaptive RBF neural network control scheme is developed for coordinated motion between the base attitude and the arm joints.The proposed scheme does not need linear parameterization of the dynamic equation of the system and any accurate prior-knowledge of the actual inertial parameters.Also it does not need to train the neural network offline so that it would present real-time and online applications.A planar free-floating dual-arm space robot is simulated to show feasibility of the proposed scheme. |
| |
Keywords: | free-floating dual-arm space robot RBF neural network GL matrix and its product operator coordinated motion adaptive control |
本文献已被 维普 万方数据 SpringerLink 等数据库收录! |
| 点击此处可从《应用数学和力学(英文版)》浏览原始摘要信息 |
|
点击此处可从《应用数学和力学(英文版)》下载全文 |