首页 | 本学科首页   官方微博 | 高级检索  
     


A new displacement-type stability equation and general stability analysis of laminated composite circular conical shells with triangular grid stiffeners
Authors:Wang Hu  Wang Tsun-kuei
Affiliation:Peking University of Aeronautics and Astronautics, Beijing
Abstract:In this paper, based on the theory of Donnell-type shallow shell, a new displacement-type stability equations is first developed for laminated composite circular conical shells with triangular grid stiffeners by using the variational calculus and generalized smeared-stiffener theory. The most general bending stretching couplings, the effect of eccentricity of stiffeners are considered. Then, for general stability of composite triangular grid stiffened conical shells without twist coupling terms, the approximate formulas are obtained for critical external pressure by using Galerkin's procedure. Numerical examples for a certain C/E composite conical shells with inside triangular grid stiffeners are calculated and the results are in good agreement with the experimental data. Finally, the influence of some parameters on critical external pressure is studied. The stability equations developed and the formulas for critical external pressure obtained in this paper should be very useful in the astronautical engineering design.
Keywords:general stability   composite materials   circular conical shells   triangular grid stiffeners   Galerkin's procedure
本文献已被 CNKI SpringerLink 等数据库收录!
点击此处可从《应用数学和力学(英文版)》浏览原始摘要信息
点击此处可从《应用数学和力学(英文版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号