首页 | 本学科首页   官方微博 | 高级检索  
     


Globally convergent limited memory bundle method for large-scale nonsmooth optimization
Authors:Napsu Haarala  Kaisa Miettinen  Marko M. Mäkelä
Affiliation:1.School of Computational & Applied Mathematics,University of the Witwatersrand,Johannesburg,South Africa;2.Helsinki School of Economics,Helsinki,Finland;3.Department of Mathematical Information Technology,University of Jyv?skyl?,Finland
Abstract:
Many practical optimization problems involve nonsmooth (that is, not necessarily differentiable) functions of thousands of variables. In the paper [Haarala, Miettinen, Mäkelä, Optimization Methods and Software, 19, (2004), pp. 673–692] we have described an efficient method for large-scale nonsmooth optimization. In this paper, we introduce a new variant of this method and prove its global convergence for locally Lipschitz continuous objective functions, which are not necessarily differentiable or convex. In addition, we give some encouraging results from numerical experiments.
Keywords:Nondifferentiable programming  Large-scale optimization  Bundle methods  Variable metric methods  Limited memory methods  Global convergence
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号