首页 | 本学科首页   官方微博 | 高级检索  
     检索      


IMPACT OF ENHANCED SIMULATED SOLAR ULTRAVIOLET RADIATION UPON A MARINE COMMUNITY
Authors:Robert C  Worrest  Henry Van  Dyke Bruce E  Thomson
Institution:Department of General Science, Oregon State University, Corvallis, OR 97331, U.S.A.
Abstract:Abstract—There is evidence to indicate that an increased exposure to solar radiation in the UV-B region (specifically, 290–320 nm) may occur as a result of anthropogenic degradation of stratospheric ozone. The fact that present levels of solar UV radiation can detrimentally affect marine organisms led to experiments to quantify the impact of increased UV radiation upon a marine community. Two 720–l seawater chambers (continuous flow-through design) were exposed to simulated solar UV radiation. Fluorescent sunlamps filtered by a 290 nm cutoff filter (a 0.13 mm thickness of cellulose triacetate film) were used as the radiation source. Utilization of three different weighting factors for the spectral irradiances at the surface of the chambers yielded differences of 18%, 35% and 40% in biologically effective fluence rate between the two chambers. Analysis of attached forms of algae at various depths demonstrated that a surface exposure of 1.4W/m2 in the 290–315nm waveband as contrasted with the chamber receiving a surface exposure of 1.0W/m2 resulted in depressed Chl a concentrations, reduced biomass, increased autotrophic indices, and decreased community diversity. These results indicate a potential for adverse effects of increased solar UV-8 radiation: decreased community diversity, community structure shifts, and decreased productivity.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号