首页 | 本学科首页   官方微博 | 高级检索  
     


The elastic behaviour of tetrahedral materials with vacant sites
Authors:G.A. Saunders  T. Seddon
Affiliation:School of Physics, University of Bath, Claverton Down, Bath BA2 7AY, England
Abstract:
As part of a study of defect tetrahedral structure compounds, the elastic constants of single crystal specimens of Hg3Ga2□Te6 and HgIn2□Te4 have been measured between 77 K and room temperature using the pulse superposition technique. These compounds are included in the series HgTe, Hg5In2□Te8, Hg3In2□Te6 and HgIn2□Te4 and HgTe, Hg5Ga2□Te8, Hg3Ga2□Te6 where there is a progressive increase in the concentration of vacant sites. While the other compounds studied are cubic, HgIn2□Te4 has a tetragonal structure with a ca ratio of 2.0. The components of the elastic stiffness tensor of this material at 77 K are (in units of 1011 dyne cm?2) C11 = 4.31 C12 = 2.54 C44 = 2.14 C33 = 4.47 C13 = 2.18 C66 = 2.41. In a cubic material C11 = C33, C44 = C66 and C12 = C13: the elastic behaviour of this tetragonal compound closely resembles that of a cubic material, as might be anticipated from its structure. This similarity is further illustrated by reference to the symmetry of phase velocity and Young's modulus surfaces. Examination of the elastic constants and reduced elastic constants of these compounds shows a regular trend, the elastic stiffness decreases as the number of vacant sites increases. There is an approximately linear relationship between the reduced bulk modulus and the number of sited vacancies.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号