首页 | 本学科首页   官方微博 | 高级检索  
     


Microfluidic lithography of SAMs on gold to create dynamic surfaces for directed cell migration and contiguous cell cocultures
Authors:Lamb Brian M  Barrett Devin G  Westcott Nathan P  Yousaf Muhammad N
Affiliation:Department of Chemistry and the Carolina Center for Genome Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, USA.
Abstract:
A straightforward, flexible, and inexpensive method to create patterned self-assembled monolayers (SAMs) on gold using microfluidics-microfluidic lithography-has been developed. Using a microfluidic cassette, alkanethiols were rapidly patterned on gold surfaces to generate monolayers and mixed monolayers. The patterning methodology is flexible and, by controlling the solvent conditions and thiol concentration, permeation of alkanethiols into the surrounding PDMS microfluidic cassette can be advantageously used to create different patterned feature sizes and to generate well-defined SAM surface gradients with a single microfluidic chip. To demonstrate the utility of microfluidic lithography, multiple cell experiments were conducted. By patterning cell adhesive regions in an inert background, a combination of selective masking of the surface and centrifugation achieved spatial and temporal control of patterned cells, enabling the design of both dynamic surfaces for directed cell migration and contiguous cocultures. Cellular division and motility resulted in directed, dynamic migration, while the centrifugation-aided seeding of a second cell line produced contiguous cocultures with multiple sites for heterogeneous cell-cell interactions.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号