首页 | 本学科首页   官方微博 | 高级检索  
     


Methanation of CO over nickel: Mechanism and kinetics at high H2/CO ratios
Authors:Sehested Jens  Dahl Søren  Jacobsen Joachim  Rostrup-Nielsen Jens R
Affiliation:Haldor Tops?e A/S, Nym?llevej 55, DK-2800 Kgs. Lyngby, Denmark. JSS@topsoe.dk
Abstract:The CO methanation reaction over nickel was studied at low CO concentrations and at hydrogen pressures slightly above ambient pressure. The kinetics of this reaction is well described by a first-order expression with CO dissociation at the nickel surface as the rate-determining step. At very low CO concentrations, adsorption of CO molecules and H atoms compete for the sites at the surface, whereas the coverage of CO is close to unity at higher CO pressures. The ratio of the equilibrium constants for CO and H atom adsorption, K(CO)/K(H), was obtained from the rate of CO methanation at various CO concentrations. K(H) was determined independently from temperature programmed adsorption/desorption of hydrogen to be K(H) = 7.7 x 10(-4) (bar(-0.5)) exp[43 (kJ/mol)/RT] and hence the equilibrium constants for adsorption of CO molecules may be calculated to be K(CO) = 3 x 10(-7) (bar(-1)) exp[122 (kJ/mol)/RT]. Furthermore, the rate of dissociation of CO at the catalyst surface was determined to be 5 x 10(9) (s(-1)) exp[-96.7 (kJ/mol)/RT] assuming that 5% of the surface nickel atoms are active for CO dissociation. The results are compared to equilibrium and rate constants reported in the literature.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号