首页 | 本学科首页   官方微博 | 高级检索  
     

基于可见-近红外光谱和多光谱成像技术的梨损伤检测研究
引用本文:Cao F,Wu D,Zheng JT,Bao YD,Wang ZY,He Y. 基于可见-近红外光谱和多光谱成像技术的梨损伤检测研究[J]. 光谱学与光谱分析, 2011, 31(4): 920-923. DOI: 10.3964/j.issn.1000-0593(2011)04-0920-04
作者姓名:Cao F  Wu D  Zheng JT  Bao YD  Wang ZY  He Y
作者单位:1. 浙江大学生物系统工程与食品科学学院,浙江,杭州,310029
2. 浙江省宁波市林特科技推广中心,浙江,宁波,315010
3. 浙江万里学院科研处,浙江,宁波,315100
基金项目:农业部公益性行业专项项目,浙江省重大科技专项项目,浙江省自然科学基金重点项目,宁波市重人科技攻关项目,宁波市农业攻关-合作项目
摘    要:
提出了利用可见-近红外光谱技术和多光谱成像技术检测鸭梨损伤随时间及程度变化的新方法.利用可见-近红外光谱技术,分别结合偏最小二乘(panial least squares,PLS)和最小二乘支持向量机(least squares-support vector machine,LS-SVM)方法对鸭梨受损程度和受损天数进行预测.结果表明,两种方法在鸭梨损伤后期对损伤程度的判别均具有较好的效果;LS-SVM方法对鸭梨轻度损伤的损伤天数的预测精度较高,但重度损伤天数的预测效果不如PLS方法.然后利用多光谱图像预测鸭梨受损天数.研究发现,利用LS-SVM建立的模型预测效果较稳定,预测结果相关系数均在0.85左右.说明利用可见-近红外光谱分析技术和多光谱成像技术能够快速无损地检测出鸭梨的损伤程度及时间,为鸭梨检测提供了一种新方法.

关 键 词:可见-近红外光谱  多光谱成像  鸭梨  最小二乘支持向量机  偏最小二乘法

Detection of pear injury based on visible-near infrared spectroscopy and multispectral image
Cao Fang,Wu Di,Zheng Jin-Tu,Bao Yi-Dan,Wang Zun-Yi,He Yong. Detection of pear injury based on visible-near infrared spectroscopy and multispectral image[J]. Spectroscopy and Spectral Analysis, 2011, 31(4): 920-923. DOI: 10.3964/j.issn.1000-0593(2011)04-0920-04
Authors:Cao Fang  Wu Di  Zheng Jin-Tu  Bao Yi-Dan  Wang Zun-Yi  He Yong
Affiliation:College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310029, China. kathycf919@yahoo.com.cn
Abstract:
A new approach to detect the injury degree and time of pear based on visible-near infrared spectroscopy and multispectral image has been proposed. Firstly, visible-near infrared spectroscopy combined with partial least squares (PLS) and least squares-support vector machine (LS-SVM) was used for pear injury degree and time prediction. The result indicated that these two methods both have good performances in predicting pear injury degree in the late period. The LS-SVM method is more accurate in predicting the injury time of light pear injury, but its overall result of injury time prediction is not as good as that for the PLS method. Then, the multispectral image was used to predict the time of pear injury. The result shows that for different degrees of pear injury, the prediction models based on LS-SVM have a better performance with correlation coefficients around 5.85. The result of this study can be used to detect the injury degree and time of pear rapidly and non-destructively, and provide a new approach to pear classification.
Keywords:
本文献已被 万方数据 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号