首页 | 本学科首页   官方微博 | 高级检索  
     检索      


New mechanistic insights into the iridium-phosphanooxazoline-catalyzed hydrogenation of unfunctionalized olefins: a DFT and kinetic study
Authors:Brandt Peter  Hedberg Christian  Andersson Pher G
Institution:Department of Structural Chemistry, Biovitrum AB, S-112 76 Stockholm, Sweden. peter.brandt@biovitrum.com
Abstract:The reaction mechanism of the iridium-phosphanooxazoline-catalyzed hydrogenation of unfunctionalized olefins has been studied by means of density functional theory calculations (B3LYP) and kinetic experiments. The calculations suggest that the reaction involves an unexpected Ir(III)-Ir(V) catalytic cycle facilitated by coordination of a second equivalent of dihydrogen. Thus, in the rate-determining migratory insertion of the substrate alkene into an iridium-hydride bond, simultaneous oxidative addition of the bound dihydrogen occurs. The kinetic data shows that the reaction is first order with respect to hydrogen pressure. This is interpreted in terms of an endergonic coordination of this second equivalent of dihydrogen, although a rate-determining step, in which coordinated solvent is replaced by dihydrogen, could not be ruled out. Furthermore, the reaction was found to be zeroth order with respect to the alkene concentration. This correlates well with the calculated exothermicity of substrate coordination, and the catalyst is thus believed to coordinate an alkene in the resting state. On the basis of the proposed catalytic cycle, calculations were performed on a full-sized system with 88 atoms to assess the appropriateness of the model calculations. These calculations were also used to explain the enantioselectivity exerted by the catalyst.
Keywords:asymmetric catalysis  density functional calculations  hydrogenation  iridium  kinetics
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号