Surface-activated chemical ionization ion trap mass spectrometry for the analysis of cocaine and benzoylecgonine in hair after extraction and sample dilution |
| |
Authors: | Cristoni Simone Basso Elisa Gerthoux Piermario Mocarelli Paolo Gonella Elisabetta Brambilla Maura Crotti Sara Bernardi Luigi Rossi |
| |
Affiliation: | ISB - Ion Source & Biotechnologies, Milano, Italy. simone.cristoni@gmail.com |
| |
Abstract: | Surface-activated chemical ionization (SACI) was employed for the analysis of cocaine and its metabolite, benzoylecgonine, extracted from hair. Following decontamination and acid hydrolysis procedures on the hair sample, the sample solution was diluted (1:10) and directly analyzed by liquid chromatography/surface-activated chemical ionization multiple collisional stage single reaction monitoring mass spectrometry (LC/SACI-MS(3)-SRM) without solid-phase extraction (SPE) pre-purification and concentration procedures. To increase the selectivity of the method, MS(3) was chosen instead of the less selective MS/MS. This data was compared with that achieved using gas chromatography/mass spectrometry (GC/MS), the reference method used by the Italian Government Institute of Health protocol. The limits of detection (LODs) were 0.003 ng/(mg hair) for cocaine and 0.02 ng/(mg hair) for benzoylecgonine and the limits of quantitation (LOQs) were 0.01 ng/(mg hair) for cocaine and 0.04 ng/(mg hair) for benzoylecgonine. The squared correlation coefficient (R(2)) of the calibration curve was 0.9887-0.9980 for cocaine and 0.9987-0.9997 for benzoylecgonine. The percent accuracy error was 2-5% for both cocaine and benzoylecgonine using the LC/SACI-MS(3)-SRM approach, whereas it was higher for benzoylecgonine (20-25%) using the LC/SACI-MS/MS-SRM approach compared with the GC/MS data due to hair matrix contamination. In both cases, high precision was achieved (1-3% precision error), which confirmed the stability of the developed methods. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|