首页 | 本学科首页   官方微博 | 高级检索  
     


Convex feasibility modeling and projection methods for sparse signal recovery
Authors:Avishy Carmi  Yair Censor  Pini Gurfil
Affiliation:1. Distributed Space Systems Lab, Faculty of Aerospace Engineering, Technion–Israel Institute of Technology, Technion City, Haifa 32000, Israel;2. Department of Mathematics, University of Haifa, Mt. Carmel, Haifa 31905, Israel
Abstract:A computationally-efficient method for recovering sparse signals from a series of noisy observations, known as the problem of compressed sensing (CS), is presented. The theory of CS usually leads to a constrained convex minimization problem. In this work, an alternative outlook is proposed. Instead of solving the CS problem as an optimization problem, it is suggested to transform the optimization problem into a convex feasibility problem (CFP), and solve it using feasibility-seeking sequential and simultaneous subgradient projection methods, which are iterative, fast, robust and convergent schemes for solving CFPs. As opposed to some of the commonly-used CS algorithms, such as Bayesian CS and Gradient Projections for sparse reconstruction, which become inefficient as the problem dimension and sparseness degree increase, the proposed methods exhibit robustness with respect to these parameters. Moreover, it is shown that the CFP-based projection methods are superior to some of the state-of-the-art methods in recovering the signal’s support. Numerical experiments show that the CFP-based projection methods are viable for solving large-scale CS problems with compressible signals.
Keywords:Convex feasibility problems   Subgradient projection methods   Compressed sensing   Signal processing
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号