首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Adsorption of organosilanes at a Zn-terminated ZnO (0001) surface: molecular dynamics study
Authors:Kornherr Andreas  Nauer Gerhard E  Sokol Alexey A  French Samuel A  Catlow C Richard A  Zifferer Gerhard
Institution:Institute of Physical Chemistry, University of Vienna, W?hringer Strasse 42, A-1090 Wien, Austria. andreas.kornherr@univie.ac.at
Abstract:Four different organosilanes (octyltrihydroxysilane, butyltrihydroxysilane, aminopropyltrihydroxysilane, and thiolpropyltrihydroxysilane) adsorbed at a reconstructed Zn-terminated polar ZnO (0001) surface are studied via constant temperature (298 K) molecular dynamics simulations. Both single adsorbed silane molecules as well as adsorbed silane layers are modeled, and the energy, distance, orientation, and alignment of these adsorbates are analyzed. The adsorbed silane molecules exhibit behavior depending on the chemical nature of their tail (nonpolar or polar) as well as on the silane concentration at the solid surface (single adsorption or silane layer). In contrast to the O-terminated ZnO surface studied previously, now adsorption can only occur at the vacancies of this reconstructed crystal surface, thus leading to an arched structure of the liquid phase near the crystal surface. Nevertheless, both nonpolar and polar single adsorbed silanes show a similar orientation and alignment at the surface (orthogonal in the former, parallel in the latter case) as for the O-terminated ZnO surface, although the interaction energy with the surface is considerably increased for nonpolar silanes while it is nearly unaffected for the polar ones. For adsorbed silanes within silane layers, the difference to single adsorbed silanes depends on the polarity of the tail: nonpolar silanes again show an orthogonal alignment, while polar silanes exhibit two different orientations at the solid surface-a head and a tail down configuration. This leads to two completely different but nevertheless stable orientations of these silanes at the Zn-terminated ZnO surface.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号