首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Elastoplastic modeling of circular fiber-reinforced ductile matrix composites considering a finite RVE
Authors:BR Kim  HK Lee
Institution:Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea
Abstract:A micromechanical elastoplastic damage model considering a finite RVE is proposed to predict the overall elastoplastic damage behavior of circular fiber-reinforced ductile (matrix) composites. The constitutive damage model proposed in our preceding work (Kim and Lee, 2009) considering a finite Eshelby’s tensor (Li et al., 2005, Wang et al., 2005) is extended to accommodate the elastoplastic behavior of the composites. On the basis of the exterior-point Eshelby’s tensor for circular inclusions and the ensemble-averaged effective yield criterion, a micromechanical framework for predicting the effective elastoplastic damage behavior of ductile composites is derived. A series of numerical simulations are carried out to illustrate stress–strain response of the proposed micromechanical framework and to examine the influence of a Weibull parameter on the elastoplastic behavior of the composites. Furthermore, comparisons between the present predictions and experimental data available in the literature are made to further assess the predictive capability of the proposed model.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号