首页 | 本学科首页   官方微博 | 高级检索  
     


Quantum Spatial Search with Electric Potential: Long-Time Dynamics and Robustness to Noise
Authors:Thibault Fredon  Julien Zylberman  Pablo Arnault  Fabrice Debbasch
Affiliation:1.Université Paris-Saclay, CNRS, ENS Paris-Saclay, INRIA, Laboratoire Méthodes Formelles, 91190 Gif-sur-Yvette, France;2.Sorbonne Université, Observatoire de Paris, Université PSL, CNRS, LERMA, 75005 Paris, France
Abstract:
We present various results on the scheme introduced in a previous work, which is a quantum spatial-search algorithm on a two-dimensional (2D) square spatial grid, realized with a 2D Dirac discrete-time quantum walk (DQW) coupled to a Coulomb electric field centered on the the node to be found. In such a walk, the electric term acts as the oracle of the algorithm, and the free walk (i.e., without electric term) acts as the “diffusion” part, as it is called in Grover’s algorithm. The results are the following. First, we run long time simulations of this electric Dirac DQW, and observe that there is a second localization peak around the node marked by the oracle, reached in a time O(N), where N is the number of nodes of the 2D grid, with a localization probability scaling as O(1/lnN). This matches the state-of-the-art 2D-DQW search algorithms before amplitude amplification We then study the effect of adding noise on the Coulomb potential, and observe that the walk, especially the second localization peak, is highly robust to spatial noise, more modestly robust to spatiotemporal noise, and that the first localization peak is even highly robust to spatiotemporal noise.
Keywords:quantum algorithms   quantum walks   quantum spatial search   noise
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号