首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Order and excitation in partially Gutzwiller projected t-t'-t"-J-U models
Authors:Voo Khee-Kyun
Institution:Department of Communication Engineering, Oriental Institute of Technology, Banqiao Area, New Taipei City 22061, Taiwan. kkvoo@mail.oit.edu.tw
Abstract:Extended t-t'-t"-J-U models in which the second-nearest-neighbor hopping (t') and third-nearest-neighbor hopping (t") are included are studied using renormalized mean field theory. The models are meant to be low-energy effective models for the Hubbard models, and hence the Heisenberg exchange integral J and Hubbard repulsion U are related by J = 4t(2)/U. The trial wavefunctions for the ground states are partially Gutzwiller projected Hartree-Fock states. The Gutzwiller projection is implemented by means of a Gutzwiller approximation, and the site double occupancy d is taken as a variational parameter. It is found that a large |t'/t| narrows the band filling range that sustains antiferromagnetism (AFM) in the ground state, enhances the d-wave singlet superconductivity (dSC) in hole overdoped systems, but suppresses the dSC in electron overdoped systems. For a system that has large |t'/t| and |t"/t'|, the superconductivity (SC) at the onset of AFM in hole doped band filling is strongly suppressed. On the excitation occurring, when an electron doped system simultaneously contains SC and AFM, the system is found to have a nodeless gap at the Fermi level. Finally, the result of this study is related to experiments on the superconducting cuprates.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号