首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Option Pricing in Subdiffusive Bachelier Model
Authors:Marcin Magdziarz  Sebastian Orzeł  Aleksander Weron
Institution:1.Hugo Steinhaus Center, Institute of Mathematics and Computer Science,Wroc?aw University of Technology,Wroc?aw,Poland
Abstract:The earliest model of stock prices based on Brownian diffusion is the Bachelier model. In this paper we propose an extension of the Bachelier model, which reflects the subdiffusive nature of the underlying asset dynamics. The subdiffusive property is manifested by the random (infinitely divisible) periods of time, during which the asset price does not change. We introduce a subdiffusive arithmetic Brownian motion as a model of stock prices with such characteristics. The structure of this process agrees with two-stage scenario underlying the anomalous diffusion mechanism, in which trapping random events are superimposed on the Langevin dynamics. We find the corresponding fractional Fokker-Planck equation governing the probability density function of the introduced process. We construct the corresponding martingale measure and show that the model is incomplete. We derive the formulas for European put and call option prices. We describe explicit algorithms and present some Monte-Carlo simulations for the particular cases of α-stable and tempered α-stable distributions of waiting times.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号